

# **Transverse Profiles Applications: Rutting, Crowning & Cross Slope**

# John B. Ferris Vehicle Terrain Performance Laboratory Mechanical Engineering, Virginia Tech

vehicle. terrain. performance.



# Outline

- Measurement and Gridding
- Issues with rut measurement (as an example)
- Galerkin projection of transverse profiles onto orthonormal basis of discretised Legendre polynomials (read: curve fitting)
- Research Need



Vehicle Terrain Performance Laboratory (VTPL)





Z<sub>i,k</sub>

u(i)

Measurement and Gridding Estimate Nodal Height



v(i)



# **Rutting Issues**

Rut depth underestimation *bias* (*no variation or wander*)



### **/IRGINIA** TECH

Vehicle Terrain Performance Laboratory (VTPL)

# **Rutting Issues**

# Variation (rough estimates) due to

Standard







**Rutting Issues** 

Why underestimation?

Statistical implication of using extrema as a measure

→ Extremely sensitive to outliers

6 sets of 10 Random Samples from same Normal Distribution,  $\sigma = 2 \text{ mm}$ 

### Range of values = 3.5 mm

|           | 2.112  | -2.640 | 1.513  | 1.046  | -1.348 | 2.668  |
|-----------|--------|--------|--------|--------|--------|--------|
|           | -2.477 | 2.302  | -0.593 | 0.946  | 3.677  | -1.488 |
|           | -0.032 | -1.802 | -1.895 | -0.677 | -0.037 | 1.306  |
|           | 3.493  | -0.228 | 1.924  | 4.208  | -3.472 | 5.627  |
|           | -1.982 | -0.451 | 1.245  | 0.996  | -0.339 | 0.036  |
|           | 2.218  | -1.999 | -0.322 | 2.810  | 4.992  | -0.008 |
|           | 0.792  | -0.995 | 4.414  | -1.342 | 2.227  | 1.528  |
|           | -1.708 | 1.570  | 2.263  | 4.383  | 1.689  | -1.919 |
|           | 2.844  | 1.681  | 1.041  | 2.336  | -2.291 | -0.146 |
|           | 1.473  | 1.102  | -0.324 | 2.060  | 1.110  | 2.742  |
| Max       | 3.493  | 2.302  | 4.414  | 4.383  | 4.992  | 5.627  |
| Min       | -2.477 | -2.640 | -1.895 | -1.342 | -3.472 | -1.919 |
| Max - Min | 5.970  | 4.942  | 6.308  | 5.725  | 8.464  | 7.545  |
|           |        |        |        |        |        |        |

#### vehicle. terrain. performance.



Curve Fit

Rejects outliers Least-squared-error fit

But... needs to capture surface characteristics

- Elevation
- Cross-slope
- Crowning
- Rutting



Transverse locations, (m)



www.me.vt.edu / VTPL

vehicle. terrain. performance.



Curve Fit

Consider a set of Legendre Polynomials



Curve Fit Recall Transverse spacing, v(j)

Discretize the polynomials

- according to spacing v(j)
- ex: Rutting

Orthonormalize each discretized polynomial (e.g., Gram-Schmidt) → Orthonormal basis vectors



Normalized Transverse Distance

vehicle. terrain. performance.

## Vehicle Terrain Performance Laboratory (VTPL)



## Vehicle Terrain Performance Laboratory (VTPL)

# Curve Fit

# Example:

100 \* Elevation + 2 \* Cross-Slope + 0 \* Crowning + 0 \* Assymmetry + 5 \* Rutting

Can find these projections for all longitudinal locations



Transverse locations, (m)



### Vehicle Terrain Performance Laboratory (VTPL)





Curve Fit

### Vehicle Terrain Performance Laboratory (VTPL)

# Using 5 polynomials to fit measured surface





**Research Need** 

**GREAT!** 

So... we're done, right?

If we match "ruts" in Legendre polynomial → does not fit entire width of road



Transverse locations, v (m)



www.me.vt.edu / VTPL

vehicle. terrain. performance.



# Research Need

Projecting trans. profiles onto orthonormal basis vectors

- Smooth and precise measures of transverse profile characteristics in that the squared error is minimized
- Provides unambiguous measures of elevation, cross-slope, crowning, and rutting

# Future Work

Identify more appropriate basis vectors

Questions?

vehicle. terrain. performance.